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Time series are everywhere…
� Time series, that is, sequences of observations made through time, are 

present in everyday’s life:
� Temperature, rainfalls, seismic traces
� Weblogs
� Stock prices
� EEG, ECG, blood pressure
� Enrolled students at the Engineering Faculty
� …
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� This as well as many of the 
following figures/examples are 
taken from the tutorial given by 
Eamonn Keogh
at SBBD 2002 
(XVII Brazilian 
Symposium on 
Databases)

www.cs.ucr.edu/~eamonn/
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Why is similarity search in t.s.’s important?
� Consider a large time series DB:

� 1 hour of ECG data: 1 GByte
� Typical Weblog: 5 GBytes per week
� Space Shuttle DB: 158 GBytes
� MACHO Astronomical DB: 2 TBytes, 

updated with 3 GBytes a day 
(20 million stars recorded nightly for 4 years)
http://wwwmacho.anu.edu.au/

� Similarity search can help you in:
� Looking for the occurrence of known patterns
� Discovering unknown patterns
� Putting “things together” (clustering)
� Classifying new data
� Predicting/extrapolating future behaviors
� …
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How to measure similarity
� Given two time series of equal length D, the commonest way to measure 

their (dis-)similarity is based on Euclidean distance
� However, with Euclidean distance we have to face two basic problems

� High-dimensionality: (very) large D values
� Sensitivity to “alignment of values”

� For problem 1. we need to define
effective lower-bounding techniques
that work in a (much) lower 
dimensional space
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Dimensionality reduction: DFT (i)
� The first approach to reducing the dimensionality of time series, proposed in 

[AFS93], was based on Discrete Fourier Transform (DFT)
� Remind: given a time series s, the Fourier coefficients are complex numbers 

(amplitude,phase), defined as:

� From Parseval theorem we know that DFT preserves the energy of the 
signal:

� Since DFT is a linear transformation we have:

thus, DFT preserves the Euclidean distance
� And? What can we gain from such transformation??
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Dimensionality reduction: DFT (ii)
� The key observation is that, by keeping only a small set of Fourier 

coefficients, we can obtain a good approximation of the original signal
� Why: because most of the energy of many real-world signals concentrates 

in the low frequencies ([AFS93]): 
� More precisely, the energy spectrum (|Sf|2 vs. f) behaves as O(f-b), b > 0:

� b = 2 (random walk or brown noise): used to model the behavior of stock 
movements and currency exchange rates

� b > 2 (black noise): suitable to model slowly varying natural phenomena (e.g., 
water levels of rivers)

� b = 1 (pink noise): according to Birkhoff’s theory, musical scores follow this 
energy pattern

� Thus, if we only keep the first few coefficients (D’ << D) we can achieve an 
effective dimensionality reduction
� Note: this is the basic idea used by well-known compression standards, such as 

JPEG (which is based on Discrete Cosine Transform)
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An example: EEG data
� Sampling rate: 128 Hz

Time series (4 secs, 512 points) Energy spectrum
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Another example
� 128  points

s’ = approximation of s with 
4 Fourier coefficients
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First 4
Fourier
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Fourier
coefficients

0.4995
0.5264
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0.6301
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0.6515
0.6596
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0.6751
0.6843
0.6954
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0.7780
0.7956
0.8115
0.8247
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0.8407
0.8431
0.8423
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…

data values
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Comments on DFT
☺ Can be computed in O(DlogD) time using FFT (provided D is a power of 2)
/ Difficult to use if one wants to deal with sequences of different length
/ Not really amenable to deal with “signals with spots” (time-varying energy)
� An alternative to DFT is to use wavelets, which takes a different 

perspective:
� A signal can be represented as a sum of contributions, each at a different 

resolution level
� Discrete Wavelet Transform (DWT) can be computed in O(D) time

� Experimental results however show that the superiority of DWT w.r.t. DFT is 
dependent on the specific dataset
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Dimensionality reduction: PAA
� PAA (Piecewise Aggregate Approximation) [KCP+00,YF00] is a very 

simple, intuitive and fast (O(D)) method to approximate time series
� Its performance is comparable to that of DFT and DWT

� We take a window of size W and segment our time series into 
D’ = D/W “pieces” (sub-sequences), each of size W

� For each piece, we compute the average of values, i.e.
� Our approximation is therefore s’ = (s’1,…,s’D’)
� We have √W× L2(s’,q’) ≤ L2(s,q)

(arguments generalize those used for the “global average” example)
� The same can be generalized to work with arbitrary Lp-norms [YF00]
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The “alignment” problem
� Euclidean distance, as well as other Lp-norms, are not robust w.r.t., even 

small, contractions/expansions of the signal along the time axis
� E.g., speech signals

� Intuitively, we would need a distance measure that is able to “match” a point 
of time series s even with “surrounding” points of time series q
� Alternatively, we may view the time axis as a “stretchable” one

� A distance like this exists, and is called “Dynamic Time Warping” (DTW)!

Fixed Time Axis
Sequences are aligned “one to one”

“Warped” Time Axis
Non-linear alignments are possible
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How to compute the DTW (i)
� Assume that the two time series s and q have the same length D

� Note that with DTW this is not necessary anymore!
� Construct a D×D matrix d, whose element di,j is the distance 

between si and qj
� We take di,j = (si - qj)2, but other possibilities exist (e.g., |si – qj|)

� The “rules of the game”:
� Start from (0,0) and end in (D-1,D-1)
� Take one step at a time
� At each step, move only by increasing i, j, 

or both
� i.e., never go back!

� “Jumps” are not allowed!
� Sum all distances you have found in the “warping path”
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How to compute the DTW (ii)
� The figure shows a possible warping path w, whose “cost” is 21

� The “Euclidean path” moves only along the main diagonal, and costs 29

The DTW is the minimum cost among all the warping paths

� But the number of path is exponential in D /
� Ok, but we can use dynamic programming, with complexity O(D2) ☺
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How to compute the DTW (iii)
� From the d matrix, incrementally build a new matrix WP, 

whose elements wpi,j are recursively defined as:
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� Then set dDTW(s,q) = √wpD-1,D-1
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A real-world graphical example
Power-Demand time series
Each sequence corresponds 
to a week’s demand for power 
in a Dutch research facility 
in 1997

Monday was a holiday

Wednesday was a holiday
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Fast searching with DTW
� We have now 2 problems to face, if we want to use DTW for searching:

1. Computing the DTW is very time-consuming
2. How to index it?

� Both problems can be solved:
1. Use a lower-resolution approximation of the time series

� However the method can introduce false dismissals

1.3 sec

22.7 sec
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How to index DTW?
� Using metric trees!
� Unfortunately, DTW is not a metric…
� Proof:
�s=<0,0>
� t=<1,2>
�q=<1,2,2>

�DTW(s,q) = 9 > 
(DTW(s,t) + DTW(t,q)) = 5 + 0
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Indexing the DTW (sketch) (i)
� An effective indexing technique for DTW has been proposed in 

[Keo02]
� The method applies only if we have some “global constraint” on the 

allowed warping paths
q

s

The Sakoe-Chiba band
of width h=4
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Final considerations
� We have just seen some basic techniques to deal with 

(large) time series databases

� Other relevant problems exist and have attracted 
interest, among which:
� Searching for similar sub-sequences
� Searching for multi-dimensional time series (i.e., trajectories)


