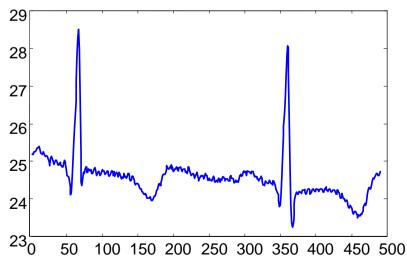
Serie Temporali

Sistemi informativi per le Decisioni

Slide a cura di Prof. Paolo Ciaccia

Time series are everywhere...

- Time series, that is, sequences of observations made through time, are present in everyday's life:
 - □ Temperature, rainfalls, seismic traces
 - Weblogs
 - Stock prices
 - EEG, ECG, blood pressure
 - □ Enrolled students at the Engineering Faculty
 - □ ...



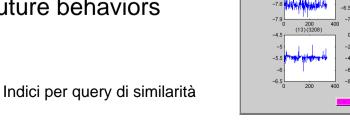
 This as well as many of the following figures/examples are taken from the tutorial given by

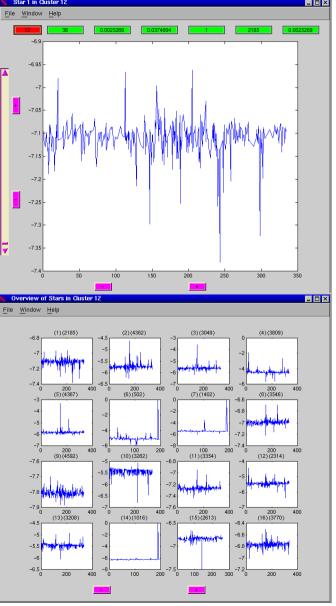
Eamonn Keogh at SBBD 2002 (XVII Brazilian Symposium on Databases)

www.cs.ucr.edu/~eamonn/

Why is similarity search in t.s.'s important?

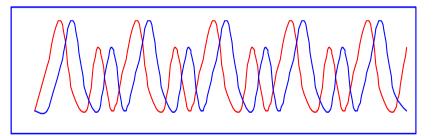
- Consider a large time series DB:
 - 1 hour of ECG data: 1 GByte
 - □ Typical Weblog: 5 GBytes per week
 - Space Shuttle DB: 158 GBytes
 - MACHO Astronomical DB: 2 TBytes, updated with 3 GBytes a day (20 million stars recorded nightly for 4 years) http://wwwmacho.anu.edu.au/
- Similarity search can help you in:
 - Looking for the occurrence of known patterns
 - Discovering unknown patterns
 - Putting "things together" (clustering)
 - Classifying new data
 - Predicting/extrapolating future behaviors
 - □ ...



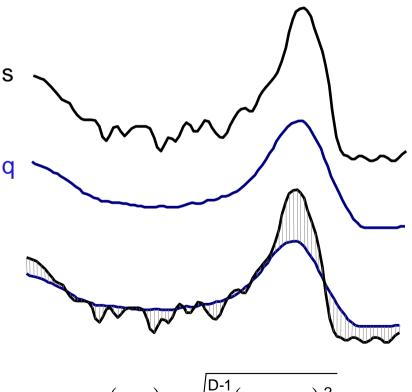


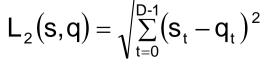
How to measure similarity

- Given two time series of equal length D, the commonest way to measure their (dis-)similarity is based on Euclidean distance
- However, with Euclidean distance we have to face two basic problems
 - High-dimensionality: (very) large D values
 - Sensitivity to "alignment of values"



- For problem 1. we need to define effective lower-bounding techniques that work in a (much) lower dimensional space
- For problem 2. we will introduce a new similarity criterion





Indici per query di similarità

Dimensionality reduction: DFT (i)

- The first approach to reducing the dimensionality of time series, proposed in [AFS93], was based on Discrete Fourier Transform (DFT)
- Remind: given a time series s, the Fourier coefficients are complex numbers (amplitude,phase), defined as:

$$S_{f} = \frac{1}{\sqrt{D}} \sum_{t=0}^{D-1} s_{t} \exp(-j2\pi f t/D)$$
 $f = 0,...,D-1$

12

From Parseval theorem we know that DFT preserves the energy of the signal:
D-1

$$E(s) = \sum_{t=0}^{D-1} s_t^2 = E(S) = \sum_{f=0}^{D-1} |S|$$

Since DFT is a linear transformation we have:

$$L_{2}(s,q)^{2} = \sum_{t=0}^{D-1} (s_{t} - q_{t})^{2} = E(s-q) = E(S-Q) = \sum_{f=0}^{D-1} |S_{f} - Q_{f}|^{2} = L_{2}(S,Q)^{2}$$

thus, DFT preserves the Euclidean distance

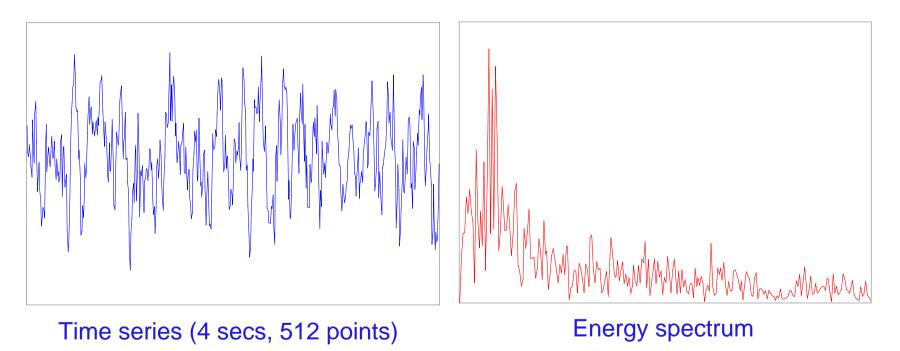
And? What can we gain from such transformation??

Dimensionality reduction: DFT (ii)

- The key observation is that, by keeping only a small set of Fourier coefficients, we can obtain a good approximation of the original signal
- Why: because most of the energy of many real-world signals concentrates in the low frequencies ([AFS93]):
- More precisely, the energy spectrum $(|S_f|^2 vs. f)$ behaves as $O(f^{-b})$, b > 0:
 - b = 2 (random walk or brown noise): used to model the behavior of stock movements and currency exchange rates
 - b > 2 (black noise): suitable to model slowly varying natural phenomena (e.g., water levels of rivers)
 - b = 1 (pink noise): according to Birkhoff's theory, musical scores follow this energy pattern
- Thus, if we only keep the first few coefficients (D' << D) we can achieve an effective dimensionality reduction</p>
 - Note: this is the basic idea used by well-known compression standards, such as JPEG (which is based on Discrete Cosine Transform)

An example: EEG data

Sampling rate: 128 Hz



Another example	data values	Fourier coefficients	First 4 Fourier coefficients
	0.4995	1.5698	1.5698
	0.5264	<u>1.0485</u>	1.0485
= 128 points	0.5523	0.7160	0.7160
128 points	0.5761	0.8406	0.8406
s s	0.5973	0.3709	0.3709
	0.6153	0.4670	0.4670
`s'	0.6301	0.2667	0.2667
	0.6420	0.1928	0.1928
	0.6515	0.1635	
	0.6596	0.1602	
0 20 40 60 80 100 120 140	0.6672	0.0992	
	0.6751	<u>0.1282</u>	
	0.6843	0.1438	
	0.6954	<u>0.1416</u>	
	0.7086	0.1400	
\smile \bigcirc	0.7240	<u>0.1412</u>	
$\wedge \wedge \wedge$	0.7412	0.1530	
	0.7595	<u>0.0795</u>	
$\sim \sim \sim \sim \sim$	0.7780	0.1013	
	0.7956	<u>0.1150</u>	
	0.8115	0.1801	
o' opprovimation of a with	0.8247	<u>0.1082</u>	
s' = approximation of s with	0.8345	0.0812	
4 Fourier coefficients	0.8407	0.0347	
	0.8431	0.0052	
	0.8423	<u>0.0017</u>	
	0.8387	0.0002	

Comments on DFT

- © Can be computed in O(DlogD) time using FFT (provided D is a power of 2)
- O Difficult to use if one wants to deal with sequences of different length
- Solution Not really amenable to deal with "signals with spots" (time-varying energy)
- An alternative to DFT is to use *wavelets*, which takes a different perspective:
 - A signal can be represented as a sum of contributions, each at a different resolution level
 - □ Discrete Wavelet Transform (DWT) can be computed in O(D) time
- Experimental results however show that the superiority of DWT w.r.t. DFT is dependent on the specific dataset

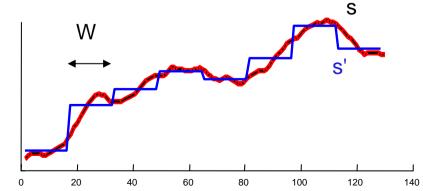


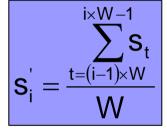
Dimensionality reduction: PAA

- PAA (Piecewise Aggregate Approximation) [KCP+00,YF00] is a very simple, intuitive and fast (O(D)) method to approximate time series
 Its performance is comparable to that of DFT and DWT
- We take a window of size W and segment our time series into D' = D/W "pieces" (sub-sequences), each of size W
- For each piece, we compute the average of values, i.e.
- Our approximation is therefore $s' = (s'_1, ..., s'_{D'})$
- We have $\sqrt{W} \times L2(s',q') \le L2(s,q)$

(arguments generalize those used for the "global average" example)

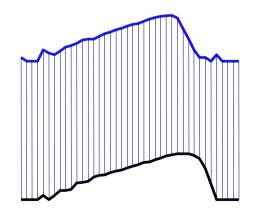
□ The same can be generalized to work with arbitrary Lp-norms [YF00]



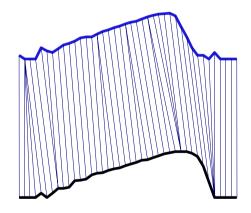


The "alignment" problem

- Euclidean distance, as well as other Lp-norms, are not robust w.r.t., even small, contractions/expansions of the signal along the time axis
 - □ E.g., speech signals
- Intuitively, we would need a distance measure that is able to "match" a point of time series s even with "surrounding" points of time series q
 - $\hfill\square$ Alternatively, we may view the time axis as a "stretchable" one
- A distance like this exists, and is called "Dynamic Time Warping" (DTW)!



Fixed Time Axis Sequences are aligned "one to one"



"Warped" Time Axis Non-linear alignments are possible

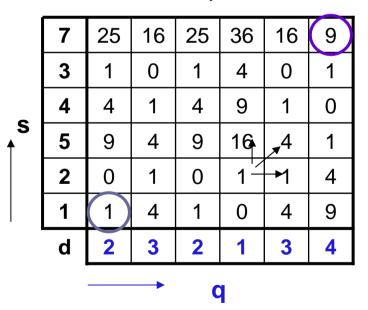
How to compute the DTW (i)

- Assume that the two time series s and q have the same length D □ Note that with DTW this is not necessary anymore!
- Construct a D×D matrix d, whose element d_{i,i} is the distance between s_i and q_i

□ We take $d_{i,i} = (s_i - q_i)^2$, but other possibilities exist (e.g., $|s_i - q_i|$)

D=6 0 2 3 5 1 4 2 3 7 5 4 S 1 2 3 2 3 4 Q

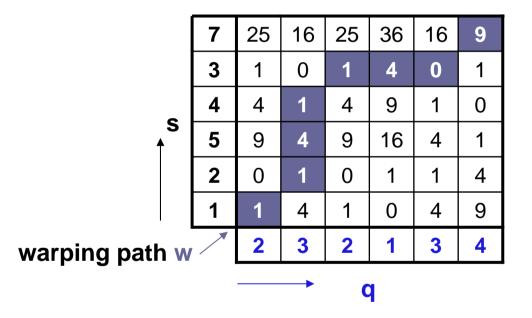
- The "rules of the game":
 - \Box Start from (0,0) and end in (D-1,D-1)
 - Take one step at a time
 - \Box At each step, move only by increasing i, j, or both
 - i.e., never go back!
 - □ "Jumps" are not allowed!
 - Sum all distances you have found in the "warping path"



How to compute the DTW (ii)

The figure shows a possible warping path w, whose "cost" is 21

□ The "Euclidean path" moves only along the main diagonal, and costs 29



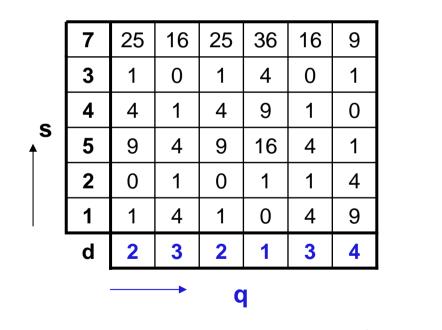
The DTW is the minimum cost among all the warping paths

- But the number of path is exponential in D ⊗
- Ok, but we can use dynamic programming, with complexity O(D²) ^(C)

How to compute the DTW (iii)

From the d matrix, incrementally build a new matrix WP, whose elements wp_{i,i} are recursively defined as:

 $wp_{i,j} = d_{i,j} + min\{wp_{i-1,j}, wp_{i,j-1}, wp_{i-1,j-1}\}$



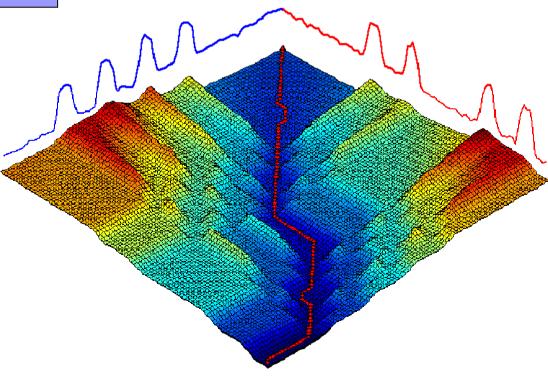
	7	40	22	31	43	24	15
	3	15	6	7	11	8	6
	4	14	6	9	18	8	5
S	5	10	5	11	18	7	5
	2	1	2	2	3	4	8
	1	1	5	6	6	10	19
	WP	2	3	2	1	3	4
→ q							

Then set d_{DTW}(s,q) = √wp_{D-1,D-1}

A real-world graphical example

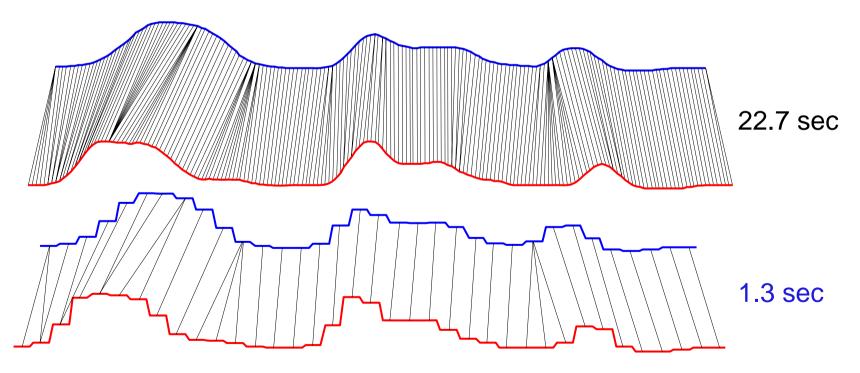
Power-Demand time series Each sequence corresponds to a week's demand for power in a Dutch research facility in 1997 Monday was a holiday

Wednesday was a holiday 🎵



Fast searching with DTW

- We have now 2 problems to face, if we want to use DTW for searching:
 - 1. Computing the DTW is very time-consuming
 - 2. How to index it?
- Both problems can be solved:
 - 1. Use a lower-resolution approximation of the time series
 - However the method can introduce false dismissals



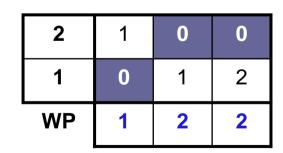
How to index DTW?

- Using metric trees!
- Unfortunately, DTW is not a metric...
- Proof:
 S=<0,0>
 t=<1,2>

□ q=<1,2,2>

0	2	5	9
0	1	5	9
WP	1	2	2

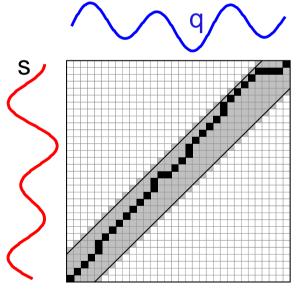
0	2	5
0	1	5
WP	1	2



 \Box DTW(s,q) = 9 > (DTW(s,t) + DTW(t,q)) = 5 + 0

Indexing the DTW (sketch) (i)

- An effective indexing technique for DTW has been proposed in [Keo02]
- The method applies only if we have some "global constraint" on the allowed warping paths



The Sakoe-Chiba band of width h=4

	7				43	24	17
	3			7	11	8	8
	4		6	9	18	8	7
S ∳	5	10	5	11	18	7	
	2	1	2	2	3		
	1	1	5	6			
-	WP	2	3	2	1	3	4
q Our example with h=2							

4

Final considerations

- We have just seen some basic techniques to deal with (large) time series databases
- Other relevant problems exist and have attracted interest, among which:
 - □ Searching for similar sub-sequences
 - □ Searching for multi-dimensional time series (i.e., trajectories)

